Reengineering natural design by rational design and in vivo library selection: the HLH subdomain in bHLHZ proteins is a unique requirement for DNA-binding function.
نویسندگان
چکیده
To explore the role of the HLH subdomain in bHLHZ proteins, we designed sets of minimalist proteins based on bHLHZ protein Max, bHLH/PAS protein Arnt and bZIP protein C/EBP. In the first, the Max bHLH and C/EBP leucine zipper were fused such that the leucine heptad repeats were not in register; therefore, the protein dimerization interface was disrupted. Max1bHLH-C/EBP showed little ability to activate transcription from the E-box (5'-CACGTG) in the yeast one-hybrid assay, and no E-box binding by quantitative fluorescence anisotropy. Max1bHLH-C/EBP's activity was significantly improved after library selection (three amino acids randomized between HLH and leucine zipper), despite the Max bHLH and C/EBP zipper still being out of register: a representative mutant gave a high nanomolar K(d) value for E-box binding. Thus, selection proved to be a powerful tool for salvaging the flawed Max1bHLH-C/EBP, although the out-of-register mutants still did not achieve the strong DNA-binding affinities displayed by their in-register counterparts. ArntbHLH-C/EBP hybrids further demonstrated the importance of maintaining register, as out-of-register mutants showed no E-box-responsive activity, whereas the in-register hybrid showed moderate activity. In another design, we eliminated the HLH altogether and fused the Max basic region to the C/EBP zipper to generate bZIP-like hybrids. Despite numerous designs and selections, these hybrids possessed no E-box-responsive activity. Finally, we tested the importance of the loop sequence in MaxbHLHZ by fluorescence and circular dichroism. In one mutant, the loop was shortened by two residues; in the other, the Lys57:DNA-backbone interaction was abolished by mutation to Gly57. Both showed markedly decreased E-box-binding relative to MaxbHLHZ. Our results suggest that, in contrast to the more rigid bZIP, the HLH is capable of significant conformational adaptation to enable gene-regulatory function and is required for protein dimerization and positioning the basic region for DNA recognition.
منابع مشابه
Forced homodimerization of the c-Fos leucine zipper in designed bHLHZ-like hybrid proteins MaxbHLH-Fos and ArntbHLH-Fos.
Although the c-Fos leucine zipper (LZ) does not form a homodimer in its native basic region/leucine zipper (bZIP) structure, we found that it is capable of homodimerization and promoting protein folding in engineered basic region/helix-loop-helix/leucine zipper (bHLHZ) hybrid proteins MaxbHLH-Fos and ArntbHLH-Fos, in which the bHLH subdomains of Max and Arnt are fused to the c-Fos LZ. By using ...
متن کاملDual-Target Anticancer Drug Candidates: Rational Design and Simulation Studies
This study aims to design some dual-target anticancer candidates, capable to act as an alkylating agent as well as a thymidylate synthase (TS) inhibitor. The designed scaffold is a combination of nucleobase, amino acid and aziridine structures. The candidates are docked into TS and three DNA double strand structures and evaluated based on their binding interaction energies and ligand efficienci...
متن کاملChallenges to Design and Develop of DNA Aptamers for Protein Targets. I. Optimization of Asymmetric PCR for Generation of a Single Stranded DNA Library
Aptamers, or single stranded oligonucleotides, are produced by systematic evolution of ligands by exponential enrichment, abbreviated as SELEX. In the amplification and regeneration step of SELEX technique, dsDNA is conversed to ssDNA. Asymmetric PCR is one of the methods used for the generation of ssDNA. The purpose of this study was to design a random DNA library for selection of aptamers wit...
متن کاملPortal-large terminase interactions of the bacteriophage T4 DNA packaging machine implicate a molecular lever mechanism for coupling ATPase to DNA translocation.
DNA packaging by double-stranded DNA bacteriophages and herpesviruses is driven by a powerful molecular machine assembled at the portal vertex of the empty prohead. The phage T4 packaging machine consists of three components: dodecameric portal (gp20), pentameric large terminase motor (gp17), and 11- or 12-meric small terminase (gp16). These components dynamically interact and orchestrate a com...
متن کاملComputer Aided Molecular Modeling Of Membrane Metalloprotease
Molecular modeling is a set of computational techniques for construction of 3D structure of a protein especially membrane bound proteins whose structures can not be elucidated using experimental techniques. These techniques has been applied in the study of membrane metalloproteases for comparing wild and mutated enzymes, docking inhibitors in the catalytic site and examination of binding pocket...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Protein engineering, design & selection : PEDS
دوره 23 5 شماره
صفحات -
تاریخ انتشار 2010